
Opposition-Based Differential Evolution with
Protective Generation Jumping

Ali Esmailzadeh, IEEE Member
Faculty of Engineering and Applied Science

University of Ontario Institute of Technology (UOIT)
Oshawa, Ontario L1H 7K4

Email: ali.esmailzadeh@uoit.ca

Shahryar Rahnamayan, IEEE Member
Faculty of Engineering and Applied Science

University of Ontario Institute of Technology (UOIT)
Oshawa, Ontario L1H 7K4

Phone: (905) 721-8668 ext.3843
Fax: (905)-721-3178

Email: shahryar.rahnamayan@uoit.ca

Abstract—The Opposition-based Differential Evolution (ODE)
algorithm has shown to be superior to its parent, Differential
Evolution (DE) algorithm in solving many real-world problems
and benchmark functions efficiently. An acceleration component
of ODE, called generation jumping, is involved with creating
opposite population and competing with current population,
and from the union of those populations, selecting the Np

fittest individuals. The jumping is triggered based on a constant
percentage (i.e., jumping rate) during search process. There are
optimization problems in which generation jumping is not useful
and only wastes computation time and resources. In this paper,
we focus on those certain benchmark functions which ODE
performs poorly because of the useless generation jumping,
and we introduce Opposition-Based Differential Evolution with
Protective Generation Jumping (ODEPGJ), in which it makes the
ODE algorithm more adaptive in term of generation jumping. In
fact, we stop generation jumping when it seems to be unhelpful in
acceleration process. The experimental verifications are provided
to show the improvement caused due to the mentioned protective
generation jumping.

I. INTRODUCTION

The p-metaheuristic algorithms have at least one thing
in common, they all initialize and evolve populations of
candidate-solutions to solve a problem. By having more than
one candidate, specially for problems with difficult landscapes,
it is beneficial to use population-based metaheuristic so that
the search process does not get trapped easily in local optima.
There have been different schemes and algorithms introduced
over the years that increase the diversity of initial population.
However, with any attempts to increase the diversity, there
are overhead costs involved. As in most cases with computa-
tional algorithms, the added overhead is in terms of increased
computational time and storage. Even with great advances in
computer hardware, computational time is still main concern
for designed algorithms. For solving large-scale problems,
even with a modern computer equipped with latest hardware,
a single simulation could take a long time to terminate.
This is the motivation for researchers to make existing

algorithms faster and more efficient. One of the ways to
achieve this is to make an algorithm adaptive. For example, the
algorithm will execute the steps defined in the algorithm until
it realizes that certain steps are no longer useful. This ability
of an algorithm to adapt to its current search process situation

has the potential to save on processing time and storage. This
is an attractive direction for making algorithms smarter and
more efficient.
In the recent years, a great amount of research has been

conducted in improving population-based metaheuristic al-
gorithms in term of convergence speed. The Differential
Evolution (DE) algorithm is a population-based metaheuristic
evolutionary algorithm. DE is an efficient algorithm in solving
global optimization problems, but it has problems with, as
well, it is prone to curse of dimensionality. There has been
improvements done to improve the performance and efficiency
of DE. Das et al. have proposed a change to the mutation step
of DE using Neighborhood-Based concept [2]. In this work,
the authors attempt to balance the exploration and exploitation
of the algorithm by using a self-adaptive neighborhood-based
mutation.
In research work by Zhang and Sanderson in 2009, the

current-to-pbest mutation scheme is used, along with adaptive
control of crossover and mutation parameters [3]. In this
algorithm, called JADE, a historical data about past candidate-
solutions is kept and utilized to guide the search. JADE has
outperformed other evolutionary algorithms, particularly large-
scale problems [3].
Another improvement done to the original version of DE is

called Opposition-based Differential Evolution (ODE), intro-
duced by Rahnamayan et al. [10], which applies the concept of
Opposition-Based Learning to accelerate the DE algorithm. In
ODE, the algorithm includes generation jumping which creates
opposite population to compete with the current population.
In ODE, the frequency of generation jumping is set with
a jumping rate parameter, Jr. The Jr parameter is set to
a constant value for the entire search process. Generation
jumping, utilized in ODE, is not an exception in regards to
computational overhead. It increases diversity of the current
population but needs extra function calls.
The opposition concept has been applied to other p-

metaheuristic algorithms, such as, Particle Swarm Optimiza-
tion (PSO), called Opposition-Based Particle Swarm Opti-
mization (OPSO), by Han et al. [1]. In OPSO the opposite
of the velocity and position of a particle are taken into con-
sideration. Similar to ODE, in OPSO the generation jumping

978-1-61284-072-7/11/$26.00 ©2011 IEEE

is used, and Jr value is set to a constant value for the entire
search.
The opposition concept was also utilized in Biogeography-

Based Optimization (BBO) algorithm, entitled Oppositional
biogeography-based optimization, by Ergezer et al. [4]. In this
research work, population jumping, Jr, is used to promote
generation of opposite population.
Rahnamayan et al. introduced a modification to ODE in

2007 by having variable jumping rate [5]. In that paper, the
jumping rate value is linearly changed based on the number of
function evaluations. The higher jumping rate value was used
at the beginning of the search during exploration.
The generation jumping of ODE does not always have a

positive effect, hence, generation jumping (and opposition) has
to be used when it is useful. In this paper, we will examine the
Jr parameter of the ODE algorithm, which is a constant value
throughout the search. We intend to make generation jumping
process of ODE protective, such that, when generation jump-
ing is no longer useful in the search process, it is stopped (i.e.,
Jr=0), and hence, saves on computation costs.
The rest of paper is organized as follows: in Section II,

the classical Differential Evolution (DE) and Opposition-based
Differential Evolution (ODE) are briefly reviewed. In Section
III, modification to the scheme of generation jumping in
ODE which builds our proposed approach, is explained. The
experimental results and analysis are given in Section IV.
Finally, the work is concluded in Section V.

II. A SHORT REVIEW OF CLASSICAL AND
OPPOSITION-BASED DIFFERENTIAL EVOLUTION

The classical Differential Evolution algorithm and the
Opposition-based Differential Evolution are briefly reviewed
because of their relevance to the proposed algorithm in this
paper.

A. Differential Evolution

Differential Evolution (DE) is a population-based and di-
rected search method [6], [7]. Like other evolutionary algo-
rithms, it starts with an initial population vector, which is
generated randomly when no preliminary knowledge about the
solution space is available.
Let us assume that Xi,G(i = 1, 2, ..., Np) are solution

vectors in generation G (Np : population size). Successive
populations are generated by adding the weighted difference
of two randomly selected vectors to a third randomly selected
one.
For classical DE (i.e., DE/rand/1/bin), the mutation,

crossover, and selection operators are straightforwardly
defined as follows:

Mutation - For each vector Xi,G in generation G a mutant
vector Vi,G is defined by

Vi,G = Xa,G + F (Xb,G −Xc,G), (1)

where i = {1, 2, ..., Np} and a, b, and c are mutually
different random integer indices selected from {1, 2, ..., Np}.

Further, i, a, b, and c are different so that Np ≥ 4 is
required. F ∈ [0, 2] is a real constant which determines
the amplification of the added differential variation of
(Xb,G −Xc,G). Larger values for F result a higher diversity
in the generated population and lower values cause a faster
convergence.

Crossover - DE utilizes the crossover operation to generate
new solutions by shuffling competing vectors and also to
increase the diversity of the population. For the classical
version of the DE (DE/rand/1/bin), the binary crossover
(shown by ‘bin’ in the notation) is utilized. It defines the
following trial vector:

Ui,G = (U1i,G, U2i,G, ..., UDi,G), (2)

where j = 1, 2, ..., D (D : problem dimension) and

Uji,G =
{

Vji,G if randj(0, 1) ≤ Cr ∨ j = k,
Xji,G otherwise. (3)

Cr ∈ (0, 1) is the predefined constant crossover rate,
and randj(0, 1) is the jth evaluation of a uniform random
number generator. k ∈ {1, 2, ..., D} is a random parameter
index, chosen once for each i to make sure that at least one
parameter is always selected from the mutated vector, Vji,G.
Most popular values for Cr are in the range of (0.4, 1) [13].

Selection - The scheme that must decide which vector (Ui,G

or Xi,G) should be a member of the next generation, G + 1.
For a maximization problem, the vector with a higher fitness
value is chosen. There are other variants based on different
mutation and crossover strategies [8].

B. Opposition-based Differential Evolution

Before explaining ODE, we need to give a brief introduc-
tion to the origin of the Opposition-Based Learning (OBL)
concept, which is the corner-stone of all the opposition-based
computations. OBL was introduced by Tizhoosh in 2005 [9].
The main concept behind OBL is to consider the opposite of
an assumption or a guess. That is, by taking into account the
opposite of an assumption, and compare it with the original
assumption, we can increase our chances to find solution
faster. Of course the concept proposed in the paper [9] was a
general, high-level concept which can be utilized in specific
optimization algorithms.
The concept of OBL is attractive when applied to optimiza-

tion algorithms, specifically, p-metaheuristic algorithms. Since
p-metaheuristic algorithms deal with a population of randomly
generated candidate-solutions, creating another population of
opposite-candidates increases the diversity of the population.
It is interesting to see that the concept of opposition helps
solving the problem more efficiently.
The opposition concept was applied and tested on the

classical DE algorithm by Rahnamayan et al. [10], called

Opposition-Based Differential Evolution (ODE). The DE algo-
rithm, as previously mentioned is an evolutionary, population-
based algorithm, which, similar to other evolutionary algo-
rithms, an initial population of candidate-solutions is generated
uniform randomly. The random population generation can play
a role in terms of convergence speed of an algorithm since
the distance of the candidates from the unknown solution
determines how fast an optimal solution can be found. In the
ODE algorithm, the concept of opposition has been used to
decrease the distance from an unknown solution by comparing
the candidate solution with its opposite and continuing with
the better one. The formula for calculating the opposite point
is as follows [9]:

x̂ = a + b− x. (4)

The Fig. 1 illustrates the candidate-solution, x, and its
corresponding opposite, x̂, in interval [a,b].

Fig. 1. The visual presentation (in 1D) of uniform-random candidate-solution,
x, and the opposite candidate-solution, x̂, in the interval [a,b], where c
indicates corresponding center of the search space, c=(x+x̂)/2.

Furthermore, for higher dimensions, the definition can be
extended as follows [9]:
Let P = (x1, x2, ..., xD) be a point inD-dimensional space,

where x1, x2, ..., xD ∈ R and xi ∈ [ai, bi] ∀i ∈ {1, 2, ..., D}.
The opposite point P̂ = (x̂1, x̂2, ..., x̂D) is defined by its
components as follow:

x̂i = ai + bi − xi. (5)

In steps of DE where a uniform-random population is
generated, the opposite of each individual (i.e., candidate-
solution) is calculated and populated. Then, from union of
the current population and the opposite one the fittest individ-
uals are selected. Therefore, the current population includes
uniform-random and opposite individuals with the better fit-
ness values. Another additional modification to DE, by ODE
is the generation jumping based on a new checking variable
called generation jumping rate, Jr, which is constant value
in the entire run, and determines opposition-based generation
jumping rate. The flowchart of ODE is presented in Fig. 2.
The simulation results of different test cases on well-known

benchmark functions done in [10], show that in overall, ODE
outperforms DE; the ODE algorithm is about 60% faster than
DE.

III. PROPOSED ALGORITHM: ODE WITH PROTECTIVE
GENERATION JUMPING

As mentioned previously, ODE uses a constant amount for
Jumping Rate (Jr). This component of ODE creates more

Fig. 2. The flowchart presentation of ODE; the gray boxes represent the
components which are added or modified in the classical DE algorithm [12].

opportunities for increasing diversity and continuing with
fitter individuals by allowing the current population to be
compared with the opposite population and selecting the fittest
individuals.
In the original scheme of ODE, the Jr value is set to a

constant value, and is chosen based on experimental efforts.
The opposition-based jumping is beneficial when the generated
opposite-points are partially better than the current points.
Otherwise, there is a wasted computational cost because of
the cost involved in calculating opposite individuals and their
evaluations (extra function calls).
Even though the purpose of generation jumping is to

accelerate convergence rate, there are optimization problems
which ODE does not converge before meeting of maximum
number of function calls (Max NFC) because of the useless
jumpings. In [10], authors have compared ODE with DE in
terms of Success Rate (SR) and Number of Function Calls
(NFC). They showed that for some benchmark functions ODE
presents a poor success rate. Even though, for the most of
58 test functions [10], ODE outperforms DE in terms of SR
and NFC, the success rate is lower than that of DE for some
functions, such as f4, f5, f6, f17, f18, f22, f25, f49, f50, f51,
f55, and f57.
In the proposed scheme, we intend to manipulate the

generation jumping from a constant rate (as in original ODE)
to constant rate but adaptive one. As the candidate-solutions
converge to the solution, the opposite candidates do not make
a significant difference in the search process; therefore, the
process of generating opposite-population is an unnecessary
step that does not help improving the convergence rate and
diversity. As a result, it wastes processing resources and time.
In this paper, we allow the Jr value to be a constant

value throughout the search process just as in ODE; but, we
want to stop the generation jumping process when it is not
helping the convergence. The idea is to keep track of when

generation jumping (i.e., generating opposite-population) is no
longer helping the current population. We call this modified
version of ODE as Opposition-based Differential Evolution
with Protective Generation Jumping (ODEPGJ). In ODEPGJ,
we define two parameters in order to determine when to stop
the generation jumping of ODE, when it is deemed useless.
We need to consider that, during jumping, what percentage of
opposite-population has been selected in the current population
(from set of P ∪ OP, Np fitter individuals are selected). When
the opposite-population is less than a certain percentage of
the current population, we consider the generation jumping
ineffective and it is better to follow the original DE steps
and stop opposition-based jumping. We call this parameter
Cut-off Threshold (CT). Since ODE algorithm is stochastic,
even in one generation jumping where CT is less than the set
amount, does not necessarily indicate that generation jumping
is useless in the rest of the search. Therefore, we need to
consider consecutive unsuccessful generation jumpings with
CT of less than the set amount, in order to consider more than
one sample. That requires us to define another parameter for
ODEPGJ to consider how many consecutive CT values of less
than set amount is allowed before jumping is stopped. We call
this parameter Cut-off Threshold Frequency (CTF). The value
set for CTF will restrict the consecutive instances for which
CT value can be less than a desired amount. By setting CT
and CTF parameters, if the generation jumping meets the CT
value for number of consecutive times set by CTF parameter,
then the generation jumping is stopped for the rest of the
search (i.e., Jr=0). By this way, the regular DE steps are
performed for each generation without any instance of creating
opposite-population; hence, it will save on computation cost
and time for the rest of the search. In fact, the proposed
scheme turns off the generation jumping after CTF consecutive
unsuccessful jumps. The ODEPGJ algorithm is presented in
Fig. 3. From comparing ODE algorithm (Fig. 2) and ODEPGJ
algorithm, the decision step is added to the generation jumping
step, in which if the percentage of opposite-individuals in
current population is less than CT value, the counter variable
is incremented by 1. At the next generation jumping step, if
the counter value is equal to the CTF value, then generation
jumping is stopped for the rest of the search.
As an example, let us assume that for a given run, CT =

10% and CTF = 5. In ODEPGJ algorithm, when there is
a generation jumping, and the percentage of OP candidates
in the current population is less than CT value (i.e., 10%),
ODEPGJ will start counting the number of consecutive jumps
in which CT is less than 10%. If the counter value is equal to
CTF value (in this case, 5), then a flag is raised and generation
jumping of ODE is deactivated for the rest of the search.

IV. EXPERIMENTAL VERIFICATIONS
A. General Control Parameter Settings
All the common parameters for these simulations, defined

below, are set to the same values as in [10], in order to have
the similar and fair experiments as the reference.

• Population size, Np = 100

Fig. 3. The flowchart presentation of ODEPGJ, where counter represents
the number of jumps in which OP percentage in the current population is less
than CT value; the gray boxes represent the components which are modified
or added in the classical DE algorithm.

• Differential amplification factor, F=0.5
• Crossover probability constant, Cr = 0.9
• Jumping Rate value, Jr = 0.3
• Cut-off Threshold, CT = 10%
• Cut-off Threshold Frequency , CTF = 5
• Strategy, DE/rand/1/bin
• Value-to-reach, VTR=10−8

• Maximum number of function calls (termination criteria),
MAXNFC=1, 000, 000

B. Benchmark Functions

The following benchmark functions are the functions used
in the ODE paper [10] to investigate the improvement of ODE
comparing to classical DE, for different schemes of jumping
rates. The following benchmark functions taken for this paper
are those which have a Success Rate (SR) of less than 1 in
[10].
• Rosenbrock’s valley

f4(x) =
n−1∑
i=1

[100(xi+1 − x2
i)

2 + (1− xi)2],

with− 2 ≤ xi ≤ 2
min(f4) = f4(1, ..., 1) = 0.

• Rastrigin’s function

f5(x) = 10n +
n∑

i=1

(x2
i − 10 cos(2πxi)),

with− 5.12 ≤ xi ≤ 5.12
min(f5) = f5(0, ..., 0) = 0.

• Griewangk’s function

f6(x) =
n∑

i=1

x2
i

4000
−

n∏
i=1

cos(
xi√

i
) + 1,

with− 600 ≤ xi ≤ 600
min(f6) = f6(0, ..., 0) = 0.

• Perm function

f17(x) =
n∑

k=1

[
n∑

i=1

(ik + 0.5)((
1
i
xi)k − 1)]2,

with− n ≤ xi ≤ n

min(f17) = f17(1, 2, 3, ..., n) = 0.

• Michalewicz function

f18(x) = −
n∑

i=1

sin(xi)(sin(ix2
i /π))2m,

with 0 ≤ xi ≤ π,m = 10
min(f18(n=2)) = −1.8013,

min(f18(n=5)) = −4.687658,

min(f18(n=10)) = −9.66015.

• Schwefel’s problem 2.21
f22(x) = max

i
{|xi|, 1 ≤ i ≤ n},

with − 100 ≤ x1 ≤ 100
min(f22) = f22(0, ..., 0) = 0.

• Kowalik’s function

f25(x) =
11∑

i=1

[ai − x1(b2
i + bix2)

b2
i + bix3 + x4

]2,

with − 5 ≤ xi ≤ 5
min(f25) = f25(0.19, 0.19, 0.12, 0.14) = 0.0003075.

where:

a =

⎡
⎣ 0.1957 0.1947 0.1735 0.1600 0.0844

0.0627 0.0456 0.0342 0.0323 0.0235
0.0246

⎤
⎦

1×11

,

b−1 =
[

0.25 0.5 1 2 4 6 8 10 12 14 16
]

• f49 - Multi-Gaussian Problem
• f50 - Neumaier 2 Problem
• f51 - Odd Square Problem
• f55 - Price’s Transistor Modeling Problem
• f57 - Schaffer 2 Problem

C. Simulation Strategy

Similar to other studies in the evolutionary optimization
[11]–[14], for all conducted experiments, trials are repeated
25 times per function.

D. Simulation Results

The results presented in this paper compare the ODEPGJ
algorithm with the original ODE algorithm, in terms of Num-
ber of Function Calls (NFC) and Success Rate (SR) values.
The summary of the results are given in Table I.
Furthermore, for some of the results, there are graphs which

represent the percentage of opposite-individuals in the current
population vs. NFC, at each generation jumping instance. The
graphs are all presented in Fig.s 4 and 5.

TABLE I
THE NUMBER OF FUNCTION CALLS (NFC) AND SUCCESS RATE (SR) OF
SELECTED BENCHMARK FUNCTIONS FOR ODE AND ODEPGJ. THE BOLD
VALUES REPRESENT IMPROVED (AND BEST) VALUES IN EACH FUNCTION.

ODE ODEPGJ
F D NFC SR NFC SR

f4 30 1000000 0 695250 0.04
f5 10 69543 0.84 146200 0.84
f6 30 69504 0.96 86483 0.96
f17 4 536500 0.04 435070 0.08
f18 10 250230 0.56 189175 0.48
f22 30 72250 0.88 72188 1
f25 4 15140 0.60 17253 0.76
f49 2 5996 0.96 5884 1
f50 4 383180 0.16 443904 1
f51 10 18352 0.84 16662 0.84
f55 9 184360 0.40 158950 0.40
f57 2 55980 0.76 7005 0.84
Avg. 221753 0.59 189502 0.69

E. Results Analysis

As seen in Table I, for functions f5, f6, f51, and f55, the SR
values between ODE and ODEPGJ are remained unchanged,
and the number of function evaluations for f5 and f6 are less
for ODE. This implies that using the cut-off generation jump-
ing did not improve solving the functions f5 and f6 in respect
to NFC and SR values. ODEPGJ algorithm did improve the
majority of functions in terms of NFC or SR value, or both.
Overall, as seen in Table I, ODEPGJ outperformed ODE on
10 out of 12 functions tested, in terms of either NFC or SR
value, or both. The main improvements, are observed on f4,
f22, f49, and f57. In all those four functions, the NFC and SR
values have been improved significantly. The average NFC and
SR values of ODEPGJ show improvement of 15% and 10%,
respectively, compared to ODE.
The visualization of the protective jumping mechanism is

presented in Fig.s 4 and 5. These figures demonstrate the
percentage of opposite individuals which are selected to be
in the current population at each generation jumping. In the
figures, each graph is the representation of the percentage of
opposite individuals (OP) in the current population (P) vs.
the NFC value after each generation jumping. The purpose
of the graphs are to show an approximate indication of when
the generation jumping is stopped. An important thing to note

is that since the simulations and algorithm of DE and ODE
are stochastic, at each run the values for NFC might vary;
therefore, it is not possible to match the exact NFC values
from ODE graph to that of ODEPGJ graph, for each function,
since they are run separately.
In Fig. 4 (b), which represents the function f17 for ODE run,

the percentage of OP in current population goes below 10%
(i.e., the CT value set for experiments of this paper) roughly
around 6,200 NFCs, while in Fig. 4 (a) (for ODEPGJ), the
generation jumping is stopped at around the 5,900 NFCs.
On the other hand, function f22, represented in Fig. 4

(c) and (d), is the only instance where there is no need to
stop jumping, and the graph confirms that it has not been
stopped correctly. We can observe that the ODE graph (d)
has no sections where the percentage of opposite individuals
go below CT value (10%). Therefore, the ODEPGJ for f22

(graph (c)), has no stoppage of jumping. For function f49

represented in Fig. 4 (e)(f), ODE representation shown in
graph (f), the percentage of opposite-individuals is below 10%
for 5 consecutive jumps roughly around 3,100 NFCs. The
ODEPGJ algorithm stops generation jumping at around 3,000
NFCs in graph (e). According to Table I, for function f49,
ODEPGJ has a higher SR and lower NFCs.
Furthermore, for function f55 presented in Fig. 5 (c) and

(d), we can observe that, the percentage of opposite individ-
uals in current population drops below 10% roughly around
6,700 NFCs. Hence, in ODEPGJ in function f55 (graph (c)),
generation jumping is stopped at roughly around 6,300 NFCs.
By observing Table I, the SR value for both ODE and ODEPGJ
algorithms is the same (0.40) for f55; however, the NFC value
of the function using ODEPGJ algorithm is considerably less
than that for ODE algorithm. This indicates that the problem
was solved with less function calls.
Implementing ODEPGJ saves overhead computational re-

sources and cost of keeping generating opposite-population
when for the rest of the search process no reasonable portion
of individuals from OP is selected for the current population.
In overall, ODE is outperformed by ODEPGJ, in terms of

NFCs and SR rate.

V. CONCLUDING REMARKS
The Opposition-based Differential Evolution (ODE) has

been successful, in outperforming classical Differential Evo-
lution (DE) in terms of solving problems with less function
evaluations. One key component of ODE is the generation
jumping which is based on a constantly-set value, Jr. It creates
opposite-population from the current population, and from
union of both current and opposite populations, selects Np

fittest individuals to continue. The rate at which generation
jumping occurs is a constant value. However, each generation
jumping involves computational cost and resources. For some
benchmark functions, the generation jumping is useless. In
this paper, we improved ODE by controlling the generation
jumping based on the ratio of survived individuals from
the opposite population. More specifically, by noticing when
generation jumping is not useful anymore, we stop the jumping

process for the rest of the search, based on two parameters
introduced in this paper: Cut-off Threshold (CT) and Cut-
off Threshold Frequency (CTF). We call this enhanced ODE
as Opposition-based Differential Evolution with Protective
Generation Jumping, ODEPGJ. This algorithm was tested on
12 benchmark functions which previously showed to have poor
success rate during solving by ODE. The results have shown
that for 10 out of 12 functions, ODEPGJ has improved either
number of function calls or success rate, or both.
As a future work, smarter jumping control mechanisms can

be investigated. A smarter ODEPGJ can in fact turn generation
jumping on and off throughout the search, based on new
parameters depending on the usefulness of jumping after the
temporary stoppage of jumping.

REFERENCES
[1] L. Han, X. He, A Novel Opposition-Based Particle Swarm Optimiza-

tion for Noisy Problems, Third International Conference on Natural
Computation, 2007 (ICNC’07), Haikou, Vol. 3, pp. 624-629, 2007.

[2] S. Das, A. Abraham, U.K. Chakraborty, A. Konar, Differential Evolu-
tion Using a Neighborhood-Based Mutation Operator, IEEE Transac-
tions On Evolutionary Computation, Vol. 13, No. 3, pp. 526-553, June
2009.

[3] J. Zhang, A.C. Sanderson, JADE: Adaptive Differential Evolution
with Optional External Archive, IEEE Transactions On Evolutionary
Computation, Vol. 13, No. 5, pp. 945-958, Oct. 2009.

[4] M. Ergezer, D. Simon, D. Du, Oppositional Biogeography-Based
Optimization, IEEE International Conference on Systems, Man and
Cybernetics (SMC’09), San Antonio, TX, pp. 1009-1014 , 2009.

[5] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-Based
Differential Evolution (ODE) with Variable Jumping Rate, IEEE
Symposium on Foundations of Computational Intelligence (FOCI’07),
Honolulu, HI, Vol. III, pp. 81-88, 2007.

[6] K. Price, An Introduction to Differential Evolution, In: D. Corne,
M. Dorigo, F. Glover (eds) New Ideas in Optimization, NcGraw-Hill,
London (UK), pp. 79-108, 1999, ISBN:007-709506-5.

[7] Godfrey C. Onwubolu and B.V. Babu, New Optimization Techniques
in Engineering, Berlin ; New York : Springer, 2004.

[8] R. Storn and K. Price, Differential Evolution- A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces, Journal of
Global OPtimization 11, pp. 341-359, 1997.

[9] H.R. Tizhoosh, Opposition-Based Learning: A New Scheme for Ma-
chine Intelligence, Int. Conf. on Computational Intelligence for Mod-
elling Control and Automation (CIMCA’2005), Vienna, Austria, Vol.
I, pp. 695-701, 2005.

[10] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-Based
Differential Evolution, Proceedings of the IEEE Transactions On Evo-
lutionary Computation, Vol. 12, No. 1, pp. 64-79, February 2008.

[11] J. Vesterstrøm and R. Thomsen, A Comparative Study of Differential
Evolution, Particle Swarm Optimization, and Evolutionary Algorithms
on Numerical Benchmark Problems. Proceedings of the Congress on
Evolutionary Computation (CEC’04), IEEE Publications, Vol. 2, pp.
1980-1987, 2004.

[12] S. Rahnamayan, H. R. Tizhoosh, M. M.A. Salama, Opposition-Based
Differential Evolution for Optimization of Noisy Problems Proceedings
of the Congress on Evolutionary Computation (CEC’06), IEEE Publi-
cations, pp. 6756-6763, 2006.

[13] S. Das, A. Konar, Uday K. Chakraborty, Improved Differential Evolu-
tion Algorithms for Handling Noisy Optimization Problems, Proceed-
ings of IEEE Congress on Evolutionary Computation, CEC2005, Vol.
2, pp. 1691-1698, 2005.

[14] T. Krink, B. Filipič, Gary B. Fogel, Noisy optimization problems - A
Particular Challenge for Differential Evolution?, Proceedings of the
2004 Congress on Evolutionary Computation, CEC2004, Vol. 1, pp.
332-339, 2004.

(a) f17(4D), Perm Function - by ODEPGJ (b) f17(4D), Perm Function - by ODE

(c) f22(30D), Schwefel’s problem 2.21 - by ODEPGJ (d) f22(30D), Schwefel’s problem 2.21 - by ODE

(e) f49(2D), Multi-Gaussian Problem - by ODEPGJ (f) f49(2D), Multi-Gaussian Problem - by ODE

Fig. 4. Some sample graphs to show the protective jumping mechanism. The graphs for f17, f22, f49, indicating the percentage of opposite individuals in
the current population vs. number of function calls (NFC) at each generation jumping, for ODE (the graphs on the right) and ODEPGJ (the graphs on the
left). Each pair of graphs for a given function show the jumping stoppage in the ODEPGJ from its corresponding ODE graph. The jumping of ODE on f17

is stopped around 5,900 NFC (graph (a)) using ODEPGJ; jumping of ODE on f22 is not stopped for the entire search; jumping of ODE on f49 is stopped
around 3,000 NFC (graph (e)) using ODEPGJ.

(a) f51(10D), Odd Square Problem - by ODEPGJ (b) f51(10D), Odd Square Problem - by ODE

(c) f55(9D), Price’s Transistor Modeling Problem - by ODEPGJ (d) f55(9D), Price’s Transistor Modeling Problem - by ODE

(e) f57(2D), Schaffer 2 Problem - by ODEPGJ (f) f57(2D), Schaffer 2 Problem - by ODE

Fig. 5. Some sample graphs to show the protective jumping mechanism. The graphs for f51, f55, f57, indicating the percentage of opposite individuals in
the current population vs. number of function calls (NFC) at each generation jumping, for ODE (the graphs on the right) and ODEPGJ (the graphs on the
left). Each pair of graphs for a given function show the jumping stoppage in the ODEPGJ from its corresponding ODE graph. The jumping of ODE on f51

is stopped around 22,200 NFC (graph (a)) using ODEPGJ; jumping of ODE on f55 is stopped around 6,300 NFC (graph (c)) using ODEPGJ; jumping of
ODE on f57 is stopped around 4,900 NFC (graph (e)) using ODEPGJ.

Administrator
Highlight

